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Abstract

Available empirical or phenomenological correlations and mechanistic models developed using average and linear

procedures are applicable within relatively narrow ranges and/or for special conditions. The present investigation
considers the interactions among active sites or bubbles and the nonlinear dynamic characteristics of the boiling
processes to analyze the stochastic and nonlinear features of boiling systems. A bubble size distribution function was
derived using a bubble number balance. A new method was then proposed for predicting the pool nucleate boiling

heat transfer ¯ux. The present model is in good agreement with previous experimental results, which indicate that
the theory presented is more reasonable than traditional theories. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Boiling processes are encountered in a large number

of applications, including not only traditional indus-

trial applications such as metallurgical quenching pro-

cesses, ¯ooded tube and shell evaporators, and

immersion cooling of industrial components, but also

modern heat transfer technologies related to space

thermal control, electronics components, nuclear reac-

tor, cooling devices, etc. A substantial amount of e�ort

has been devoted to understanding and modeling of

the transport phenomena during the boiling process. A

plethora of empirical correlations are now available in

the literature. However, most of these empirical corre-

lations can only be applied in relatively narrow ranges

and/or for special conditions with a considerable error

band. Some current correlations even contain di�erent

independent variables for boiling phenomena for the

same experimental conditions. These con¯icts can be

attributed to the extreme complexity of boiling sys-

tems. At present, it is more di�cult to suggest a unique

way to predict boiling heat transfer coe�cients than

for conduction, convection or radiative heat transfer.

A complete theory has not been developed because the

physical phenomena are not su�ciently well under-

stood. The present investigation focuses on under-

standing the boiling mechanisms.

The high heat ¯ux in nucleate boiling is commonly

attributed to the following three mechanisms [1]:

1. Latent heat transfer associated with phase change.

As a bubble grows on the surface, a thin liquid

layer forms underneath the bubble. The bubble

grows by evaporation of the liquid layer.

2. Transient conduction and micro-convection heat

transfer. This mechanism occurs when the liquid

contacts the heating surface after bubble depart-

ment.

3. Natural convection heat transfer. Natural convec-

tion heat transfer occurs in regions not occupied by

bubbles, but is often enhanced by departing

bubbles.
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These mechanisms have been used to propose many

di�erent empirical correlations [1]. Recently developed

models in the literature all include these three heat

transfer mechanisms [2,3]. The contribution of eva-

porative heat transfer is a predominant factor.

Benjamin and Balakrishnan [2] demonstrated that the

contribution of micro-layer evaporation to the heat

¯ux is as high as 40±50% at low to moderate heat

¯uxes. Latent heat transfer will play an even more im-

portant role in high heat ¯ux [4]. Stephan [5] also

stated that latent heat transfer is very important to the

total heat transfer. The well-known Mikic and

Rohsenow model [6] is in agreement with experimental

results only when accounting for the contribution of

latent heat transfer [7]. However, a salient feature for

these theories is that, the heat transported, q0(r ), from
the surface by the bubbles departing from a single

nucleation site is calculated ®rst. Then the nucleate

boiling heat transfer is found from the product of

q0(r ), the bubble number density, N, and the bubble

departure frequency, f. Therefore, classical theories

depend mainly upon macro-scale phenomena, the

mechanisms of boiling heat transfer were found by ex-

perimental observations and idealized approximations.

Numerous heat transfer correlations have been devel-

oped over the decades by modeling the nucleate boiling

heat transfer rate using a linearized approach. For

example, physical phenomena are analyzed on the

basis of a single site or stem, then by uniform con-

ditions are assumed to obtain results for a given active

site density distribution. Consequently, important in-

teractions between active sites or bubbles are ignored,

which results in a doubtful mechanistic model [8].
The literature survey suggests that the traditional

boiling heat transfer paradigm be built upon linear ap-
proximations and deterministic bubbles behavior

models. The classical theories are therefore unable to
get further insight into the nature of and to precisely
predict boiling heat transfer in practical applications.

This paper accounts for the nonlinear interaction
e�ects and includes a non-uniform bubble size distri-
bution. A stochastic or non-equilibrium statistical the-

ory of boiling is proposed considering bubble growth
and active site nucleation. The boiling process is then
described by a few basic equations and physical par-

ameters in a uni®ed fashion. The suggested model con-
siders boiling as a transient process, i.e., some embryo
bubbles formed to a certain size and continue to grow,
some bubble being already departed, while some other

embryo bubbles being just formed. Therefore, the
bubble size would be stochastic and could not be uni-
formly distributed on the surface. A new method for

calculating the nucleate boiling heat transfer has been
proposed in this paper.

2. Surface temperature variations

With the formation of an embryo bubble, the
change in the Gibbs function is expressed as [1]

DG � 4
3pr

3rv�Gv ÿ Gl� � 4pr2s �1�

Nomenclature

cÃ constants
Cp speci®c heat at constant pressure
f bubble departure frequency

F ¯uctuation growth rate
G Gibbs function
hfg latent heat

k drift growth rate
N bubble number distribution function
p pressure

P bubble probability function
q nucleation rate
q0 heat ¯ux
r bubble radius

Ra roughness
t time
T temperature.

Greek symbols
a heat transfer coe�cient

g parameter de®ned in Eq. (30)
d Dirac delta function
y parameter de®ned in Eq. (29)

l thermal conductivity
x dimensionless number de®ned in Eq. (15)
n viscosity

r density
s surface tension.

Subscripts
ave average

c critical, convection
e equilibrium, evaporation
l liquid

s saturated state
tot total
v vapor

w wall.
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where Gv and Gl are the Gibbs free energies for the
vapor and the liquid phase. s is the surface tension, rv
is the vapor density, and r denotes the bubble radius.
Assuming that the bubble is in equilibrium with the

surrounding liquid, the pressure di�erence across the

interface satis®es the Young±Laplace equation, i.e.

pv ÿ pl � 2s
r

�2�

The pressure increase in the bubble is related to the
increased saturation temperature by the well-known
Clausius±Clapeyron equation as

DTs

Dp
� Ts

hfgrv

�3�

Substituting Eq. (2) into Eq. (3), yields

DTs � 2sTs

hfgrvr
�4�

The equilibrium bubble radius can then be written as

re � 2sTs

DTshfgrv

�5�

Setting the derivative of Eq. (1) with respect to r equal
to zero, yields

rc � ÿ 2s
�Gv ÿ Gl�rv

�6�

where rc is the critical radius of a bubble. For the
instant, tc, re=rc, Eqs. (5) and (6) can be compared to

give

Gv ÿ Gl � ÿhfgDTs

Ts

�7�

Substituting Eq. (7) into Eq. (1), yields

DG � ÿ4prvhfgDTs

2Ts

r3 � 4psr2 �8�

For a given system, rv, hfg, DTs, Ts, and s are known
constants, DG will be a function of the single variable
r, and hence, the following relationship would be satis-
®ed

dr

dt
� ÿ@DG

@ r
� 4prvhfgDTs

Ts

r2 ÿ 8psr �9�

The nonlinear e�ects involved in pool boiling systems

include the non-uniform site distribution, the on/o�
behavior of sites, the formation and evaporation of
microlayers and macrolayers, the bubble generation,

growth, departure and coalescence, and the inter-
actions between bubbles or sites. All these nonlinear
e�ects are concentrated in the boundary layer near the

heater surface. Therefore, the nonlinear behavior of
pool boiling systems can be investigated by solving the

energy conservation equation and the bubble dynamic
equation in a control volume of the two-phase system
in the boundary layer adjacent to the heater surface.

In the nucleation process, the surface temperature is
extremely non-uniform and rapidly varies with time
because of the nonlinear interactions between active

sites or bubbles. Assuming that, the parameters of the
two-phase system near the surface are homogenized
throughout the whole volume and the thermophysical

properties are constant, the temperature of heating
wall can be determined by the heat balance for the
control volume of the two-phase system as

rc
dT

dt
� �aÿ ac��Tÿ Ts�

ÿ rvhfg

�1
0

d

dt

�
4

3
pr3

�
N�r, x� dr

�10a�

where T denotes the surface temperature, or

DT=(TÿTs) is the wall surface temperature superheat,
and a is the overall heat transfer coe�cient which can
be assumed to be exponentially related to the average

superheat. The convection heat transfer coe�cient, ac,
including bulk convection and natural convection is
that proposed by Jaoyhuob [9]. N(r, x ) is the bubble
size distribution function proposed in the following

sections. The bubble size is evaluated from Eq. (9),
which is rewritten as

dr

dt
� 4prvhfg�Tÿ Ts�

Ts

r2 ÿ 8psr �10b�

3. Bubble number model

The boiling process is a non-equilibrium, irreversible
kinetic process whose nature is determined by embryo

(or bubble) nucleation, growth and movement under
the action of superheat or heat ¯uxes. Boiling may be
principally divided into two stages, the nucleation and

growth of a single embryo or bubble, and the spread-
ing of dry patches formed by bubble coalescence. The
boiling process is stochastic, but not deterministic.
Hence, the whole process is also statistical, which

relates the microscopic mechanisms to macroscopic
e�ects.
The number of nucleation sites is distributed ran-

domly over a boiling surface. Judd and Chopra [8]
demonstrated that a clustering e�ect exists since the
bubble ¯ux density was non-uniformly distributed over

the boiling surface. Clustering suggests the existence of
interactions among active sites and bubbles, and
hence, the bubble growth is stochastic such that the
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bubble radius, r, may be modeled as an average back-
ground with superimposed inhomogeneous ¯uctu-

ations. The e�ects of interactions between bubbles can
be, therefore, included in the stochastic behavior of
boiling system.

Let t denote the time for which a wall is subjected
to the applied heat ¯uxes, then rÇ=(dr/dt ) is the bubble
growth rate which must obey the following generalized

Langevin equation [11]

_r � k�r� � F�t� �11�

where k(r ) is the drift growth rate determined by non-

system conditions and F(t ) is the ¯uctuation growth
rate determined by the inhomogeneous ¯uctuations. In
general, the bubble growth process may be approxi-

mately regarded as a Markov process and the ¯uctu-
ation F(t ) may be assumed to have a Gaussian
distribution for convenience, i.e.

hF�t�F�t 0�i � Qd�tÿ t 0� �12�

Here d is the Dirac delta function and Q is the ¯uctu-
ation growth coe�cient.

From stochastic theory, the generalized Fokker±
Planck equation [11], which corresponds to the gener-
alized Langevin Eq. (11) and Eq. (12), is as follows

@P�r, t�
@ t

� ÿ @
@r
�k�r�P � � Q

2

@ 2P

@r2
�13�

Eq. (13) is the di�erential equation describing the sto-
chastic growth process of an embryo bubble, where
P(r,t ) is the probability of bubbles between r and

(r+ dr ) at time t, and satis®es the normalization con-
dition as�1
0

P�r, t� dr � 1 �14�

A real boiling system includes not just a few embryos
or bubbles nucleating and growing, but a large number
of embryos or bubbles nucleating and growing simul-
taneously due to the applied heat ¯ux. The di�erential

equation describing the number of embryos or bubbles
growing in the system can then be related to the prob-
ability.

The dimensionless parameter

x � rvhfg

rlCplDT
�15�

which is the inverse of the Jacob number de®ned as
Ja=(rlCplDT )/(rvhfg), is an important parameter con-
trolling the boiling process. N(r,x ) dr is the average

bubble number having radius r at x. The average
bubble number having radius between r and (r+ dr )
at (xÿdx ) is

N�r, xÿ dx� dr �
�
Nÿ @N

@x
dx
�

dr �16�

The net increase in bubble number from x to (xÿdx )
would be

ÿ@N
@x

dx dr �17�

The bubble number increase comes from two mechan-
isms: bubble growth and nucleation. The average

bubble number growing from r to (r + dr ) from x to
(xÿdx ) is [k(r )N ]r, where k(r ) is the drift bubble
growth rate. The average bubble number with radii

exceeding (r+ dr ) and with initial radii between r and
(r + dr ) is

�k�r�N �r�dr dx �
�
�k�r�N �r �

@

@ r
�k�r�N �r dr

�
dx �18�

So, the net increase in the average bubble number
between r and (r+ dr ) due to growth will be

ÿ @
@r
�k�r�N � dr dx �19�

The average number of the newly generated bubble

between r and (r+ dr ) for x to (xÿdx ) is

q�r, x� dr dx �20�

where q(r, x ) dr is the average bubble number per unit
area between r and (r + dr ) at x due to nucleation.

Combining Eqs. (17), (19) and (20), yields

ÿ@N�r, x�
@x

� q�r, x� ÿ @

@r
�k�r�N�r, x�� �21�

Assuming q(r, x ) to be expressed by

q�r, x� � q�x�d�r� �22�

where d is the Dirac delta function, then Eq. (21) can
be rewritten as

ÿ@N
@x
� q�x�d�r� ÿ @

@ r
�k�r�N � �23�

Here, the ®rst term is the increase due to nucleation

and the second term is the increase due to growth. Eq.
(23) satis®es the initial and boundary conditions

N�r, x41� � 0 �24�

N�r41, x� � 0 �25�

Eq. (22) can be solved to determine N(r, x ) for a given
q(x ) and k(r, x ). The probability for bubbles between r
and (r+ dr ) is then determined from
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P�r, x� dr � N�r, x� dr=N�x� �26�
where N(x )=f10 N(r, x ) dr is the total bubble density.
The di�erential equations for bubble evolution can

be derived, by combining Eqs. (23)±(25), as

ÿ@N�x, r�
@x

� @

@ r
�k�r�N�x, r�� � 0 �27�

with corresponding boundary conditions:

N�x41, r� � 0 �28a�

N�x, r41� � 0 �28b�

�k�r�N �r�0 � q�x� �28c�
Benjamin and Balakrishnan [12] have developed a cor-

relation for the nucleation site density in terms of the

thermophysical properties of heating plate and liquid
and metrological properties of surface, which ®ts a
large amount of experimental data and is employed for

q(x )

q�x� � 218:8�Pr�1:63
�
1

g

�
yÿ0:4

�
rvhfg

rlCpl

�3

xÿ3 �29�

where

y � 14:5ÿ 4:5

�
Rap

s

�
� 0:4

�
Rap

s

�2

�30a�

g �
����������������������
lw

ll

rwCpw

rlCpl

s
�30b�

Pr is the Prandtl number de®ned as Pr=nrCp/l, p is
the system pressure and Ra is the surface roughness.

Fig. 1. Embryo radius for 1 K average superheat.

Fig. 2. Attractor for 1 K average superheat.

Fig. 3. Bubble radius for 7 K average superheat.

Fig. 4. Attractor for 7 K average superheat (`+7' denotes y-

coordinate moved to left for 7 K).
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There are many correlations describing the bubble
growth rate. If the heat is transferred to the bubble
from the liquid microlayer underneath the bubble in

the form of latent heat, the average bubble growth rate
was determined by Labuntsov [13] as

k�r, x� � ĉ
ll

rlCpl

xÿ1 �31�

with constant cÃ=5 to 10. Solving Eq. (27) yields

N�x, r� �
218:8�Pr�1:03

�
1

g

�
yÿ0:4

�
rvhfg

rlCpl

�3

Cplrl

ĉllx
2

exp

�
ÿ 2rlCpl

ĉll

r

�
�32�

Eq. (32) means that, the bubble nucleation site density
will be inversely related to the square of x and

decreases exponentially with increasing bubble radius.
The bubble probability can be obtained from Eq.

(26) as

P�x, r� � 2rlCpl

ĉll

exp

�
ÿ 2rlCpl

ĉll

r

�
�33�

Therefore, the bubble probability decreases exponen-
tially with increasing bubble radius.

4. Pool nucleate boiling heat transfer

We consider the most important contribution to the

nucleate boiling heat transfer belongs to latent heat
and convection mainly including micro-convection and
natural convection heat transfer associated with the

nucleate boiling process. Accounting for the nonlinear
aspects of the surface temperature variation and
bubble interaction, we propose a new method to pre-
dict the nucleate boiling heat transfer.

If the latent heat transported from the surface by
the bubbles departing from a single nucleation site is
q0e(r ), the overall latent heat transfer q0e can be calcu-

lated as

q 00e �
�1
0

q 00e �r�N�r, x� dr

� rvhfg

�1
0

d

dt

�
4

3
pr3

�
N�r, x� dr

�34�

Using Eq. (32), gives

q 00e �
218:8p� pr�1:63y0:4

�
rvhfg

rlCpl

�4

ĉllal

2gx2

�0:3xÿ1 �
����������������������������������
0:09xÿ2 � 12xÿ1

q
�

�35�

Convective heat transfer in nucleate boiling mainly
includes: (a) the micro-convection heat transfer when

the liquid layer replacing departing bubbles contacts
the heating surface. (b) The natural convection heat
transfer (or Marangoni ¯ow heat transfer which may

be the same order of magnitude) along the surface not
occupied by bubbles. Jaoyhuob [9] proposed a coupled
convection and evaporative heat transfer model for

fully-developed nucleate pool boiling,

q 00tot � q 00e � q 00c �36�

with the convection heat transfer ¯ux q0c can be calcu-
lated as

Fig. 5. Bubble radius for 15 K average superheat.

Fig. 6. Attractor for 15 K average superheat (`+10' denotes

y-coordinate moved to left for 10 K).
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q 00c � 10ÿ3 � l2l �DT �3
sTsnl

�37�

We adapt Eqs. (35)±(37) thereby to predict the total
heat transfer ¯ux for pool nucleate boiling.

5. Predicting results with discussions

5.1. Nonlinear aspects of the surface temperature

Eqs. (10a) and (10b) were used to investigate pool
boiling of water at atmospheric pressure, using time

Fig. 7. Comparison of the prediction with experimental data [14] (copper plate, roughness Ra=0.07 mm): (a) for water; (b) for

CCl4; (c) for acetone; (d) for n-hexane.
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step of 0.001 s and 3600 iterations per time step, for

a=2DT 1.5
ave, ac=0.5DT 2

ave, and Ts=1008C. The bubble
size distribution function is given by Eq. (32) we de-

rived. DTave is the average superheat, which is the
di�erence between the average surface temperature

Tave and liquid saturated temperature Ts. Tave can be
obtained by numerical integration. Typical bubble sizes

and attractor at di�erent average superheats are shown

in Figs. 1±6. Wave characteristics in Figs. 1, 3 and 5
indicate that the bubble size varies with time. The unit

of x coordinate is millisecond. The attractor represents
the relationship between the bubble size and the aver-

age superheat. At small average superheats, the bubble
sizes damp with time and the attractor is a ®xed dot.

When the average superheat reaches a certain value,
the bubble size varies cyclically with time and the

attractor has the form of a circle. When the average
superheat reaches a higher value, the bubble size varies

chaotically with time indicating that for high heat ¯ux,
the systems must be modeled using theory of chaos.

The values where bifurcation and chaos occur depend
on the speci®ed conditions. The most important thing

is not the absolute values, but the existence of chaos in

the boiling system. The active nucleation site density
will change with time even for a given average super-

heat or heat ¯ux.
Current physical models based on a single site or a

single vapor bubble, assuming uniform conditions and
prescribed site density distributions, do not consider

possible changes of the active site density. Therefore, it

would be expected that, the existing models are incon-
sistent with most experimental data for nucleate boil-

ing in the literature. Future e�orts must address the
nonlinear interactions and the chaotic features of the

physics to correlate experimental data or to accurately
predict the heat transfer [10].

5.2. Comparison of the present model with experimental
results

Using the new method described by Eqs. (35)±(37),
the nucleate boiling heat transfer was calculated corre-

sponding to the experimental conditions in several in-
vestigations as reported in [2,14,15]. The results are
presented in Figs. 7±9. The predictions by the present

model are also compared with the experimental data
of Kurihara and Myers [14], Zuber [15] and Benjamin
and Balakrishnan [2].

The results in Figs. 7 and 9 correspond to four
di�erent boiling liquids. The heating surface in Fig. 7
is a copper plate with roughness Ra=0.07 mm, while
that in Fig. 9 is an aluminum plate with roughness

Ra=0.52 mm. Fig. 8 illustrates the prediction and com-
parison with the measurement data by Zuber [15] for
nickel plate with roughness Ra=0.045 mm and liquid

n-pentane. Apparently, at the same superheat, the heat
¯ux for the copper plate is higher than that for the
aluminum plate. This means that the bubble inter-

action and surface temperature nonlinear aspect have
less in¯uence in decreasing the heat transfer, since the
thermal conductivity of copper is much better than

that of aluminum. Actually, for copper plate, the
bubble interaction and nonlinear aspect result in less
non-uniformity of surface temperature than for alumi-
num. As shown in Figs. 7 and 9, the present model is

in good agreement with experimental data.
The data shown in Figs. 7±9 also show that, for a

same superheat, the heat ¯ux for water is almost one

order of magnitude greater than that of organic
liquids. This may be attributed to the fact that the
latent heat of water is almost one order of magnitude

greater than that of organic liquids.
Based on the survey of the available models and

physical understanding of nucleate pool boiling, an
analytical model is proposed here to predict nucleate

boiling heat transfer, the contribution due to evapor-
ative heat transfer is a predominant factor, which
di�ers from Mikic and Rohsenow's model [6], but is

similar to that of Judd and Huang [8]. The present
model provides an improved understanding of the
mechanism of nucleate pool boiling. Its application

requires only the parameters describing the heating
surface features and the physical properties.

6. Conclusions

Available empirical or phenomenological corre-
lations and physical models were developed using aver-

aged linear approximations. They can be applied only
in relatively narrow ranges with considerable uncer-
tainty. The transitions between boiling modes should

Fig. 8. Comparison of the prediction with experimental data

[15] (nickel plate, roughness Ra=0.045 mm, for n-pentane).
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be related to the formation and spreading process of

embryos, bubbles and dry patches.

The present investigation considers the interactions

among active sites or bubbles and the nonlinear

dynamics of the interactions, and analyzes the stochas-

tic and nonlinear features of the boiling systems. A

bubble-size statistical distribution function has been

derived from a bubble number balance to develop a

new method for predicting the nucleate boiling heat

transfer. The results are in good agreement with avail-

able experimental data in the literature. Hence, the

suggested method is more reasonable for analyzing

pool nucleate boiling heat transfer research incorporat-

ing the nonlinear and stochastic e�ects. Further studies

are needed to validate this approach for ¯ow nucleate
boiling.
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